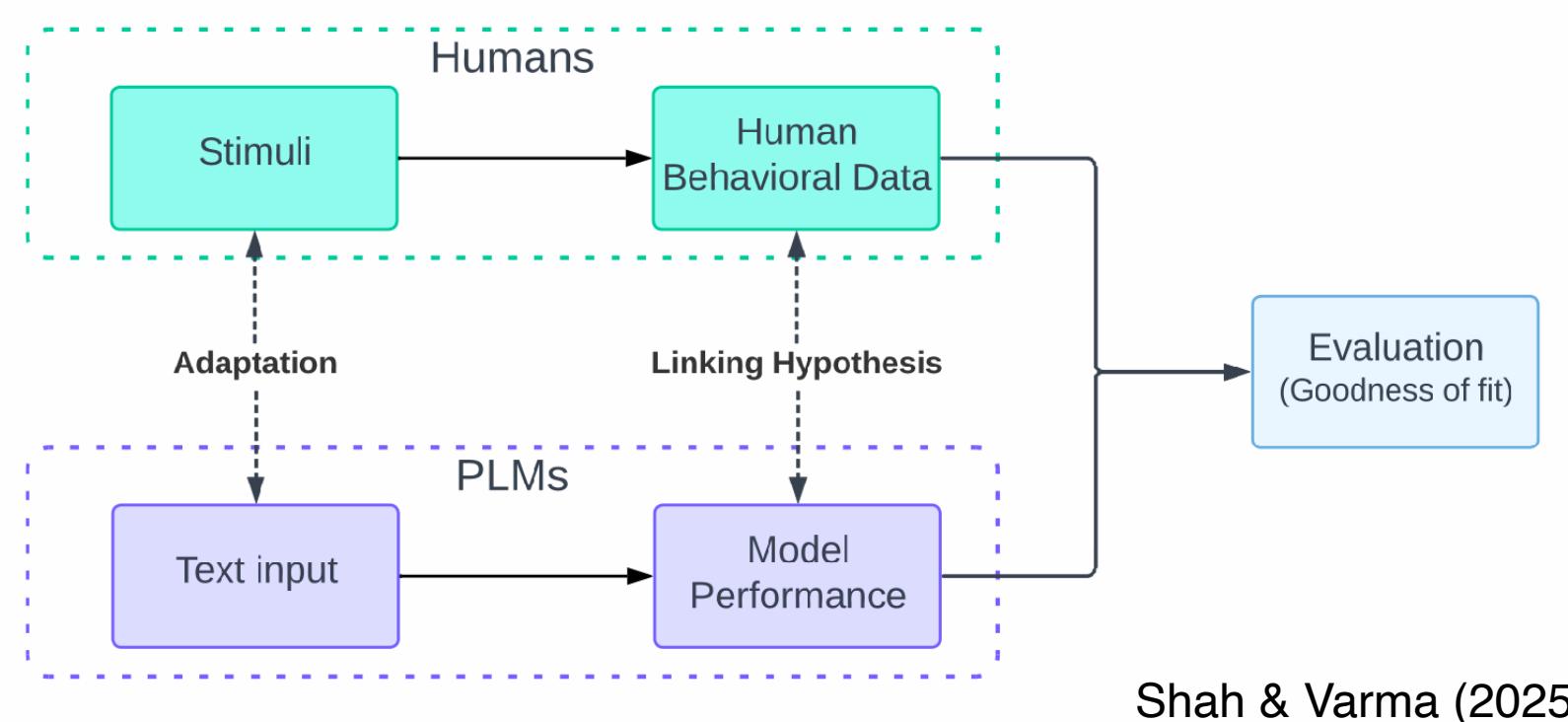


Developmentally informed large language models for interdisciplinary collaboration

Yixin Liu¹, Adam Green¹, & Stella Lourenco²

Department of Psychology, ¹Georgetown University & ²Emory University

How do we currently evaluate LLM-human alignment?



- Developmental progression during intermediate checkpoints is overlooked
- To understand how LLMs learn, examine how just final model weights, but also how abilities develop along the way

Pitfalls

Using human and model similarities as alignment (i.e., neglecting developmental alignment and only final checkpoints are tested)

- Developmentally realistic training corpora or progressive “curricula”
- Evaluate models at multiple checkpoints during training

Mapping between model outputs and human performance lacks control

- Use small-scale empirical human data to establish direct evidence of human performance (Ivanova, 2025)
- Control for context and prompt wordings (instructions)

Mismatch in data scale and modality (e.g., Pre-trained LLMs trained on vast data vs. human only require few-shots learning)

- Curate developmentally plausible training data that matches human learning experiences
- Use smaller, structured datasets reflecting child input

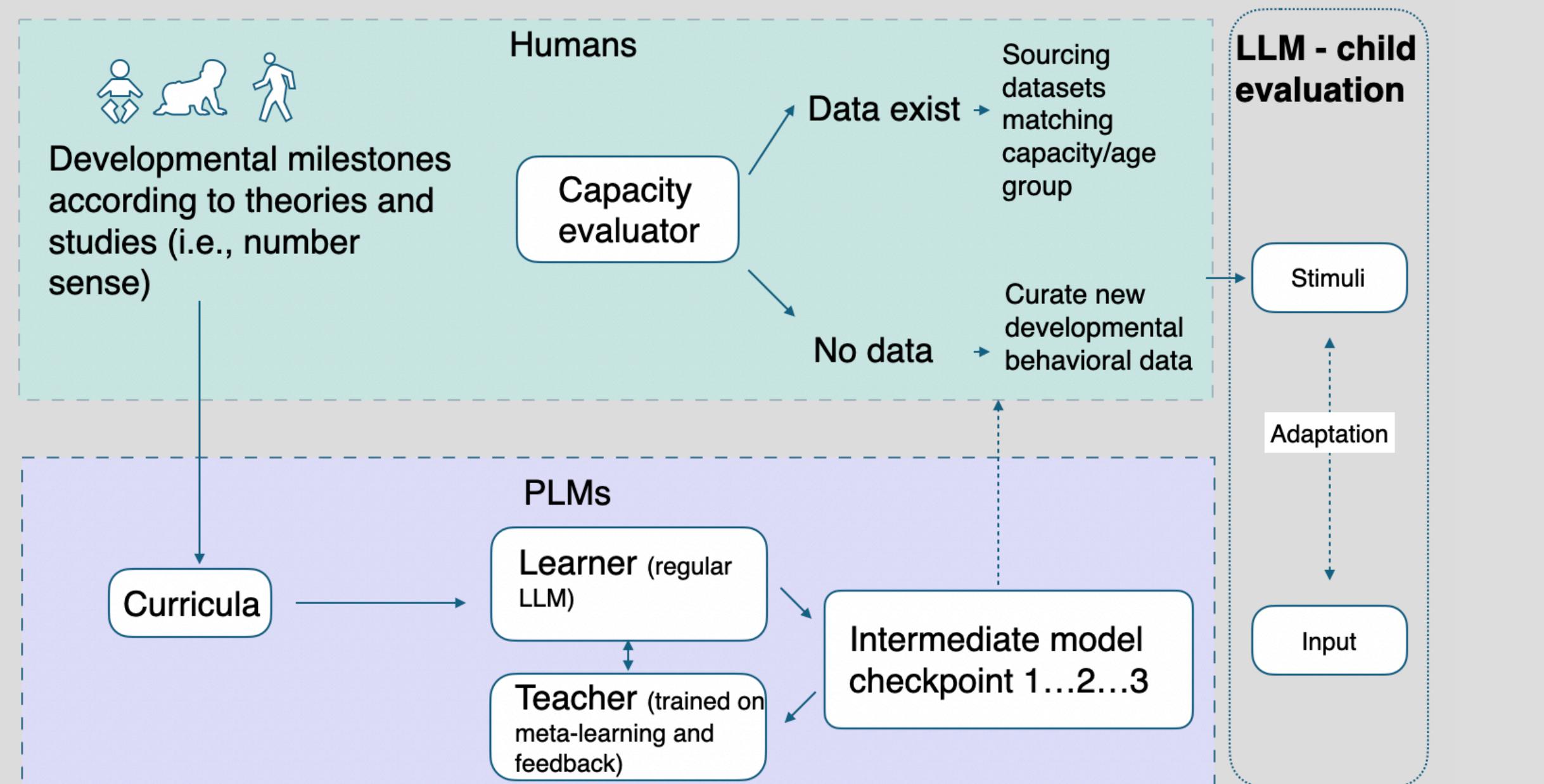
Limited interpretability and individual variation

- Parse trees, attention analysis
- Simulate individual differences

How do we evaluate *developmentally* aligned LLM?

- Developmental alignment: as a language model is trained, its performance on core cognitive tasks may mirror the milestones of cognitive development in humans
- Why are “child-like” LLM learning stages needed? To make models more transparent, interpretable, and human-like (Shah et al., 2024)

LLM - child alignment

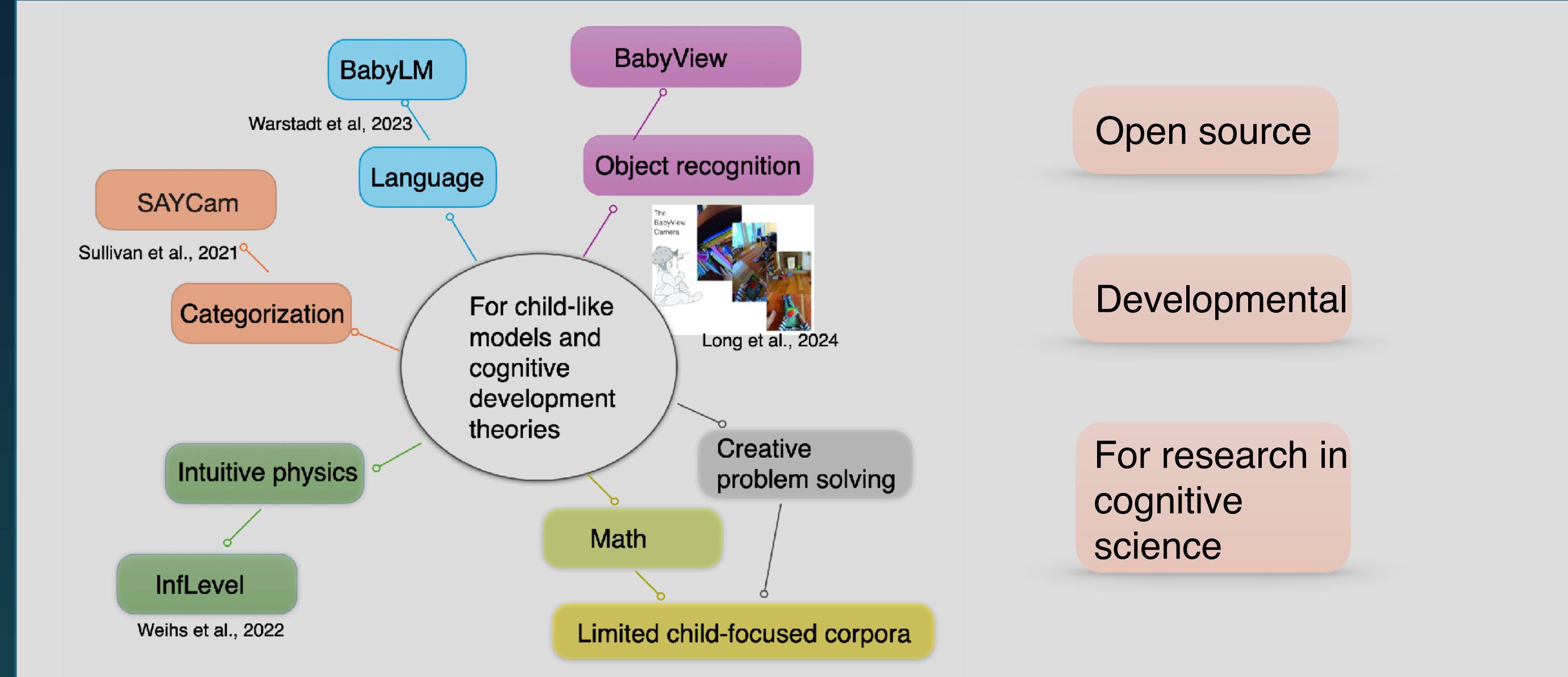


Example datasets of LLMs that resembles adults and children

Domain	Dataset/tasks	Cognitive alignment	Possibility of Developmental alignment
Linguistic competence	BLiMp	✓	✓
Conceptual understanding	Typicality effect	✓	✓
Numerical abilities	Mental number line	✗	✗
Fluid reasoning	Ravens Progressive Matrices	?	✓

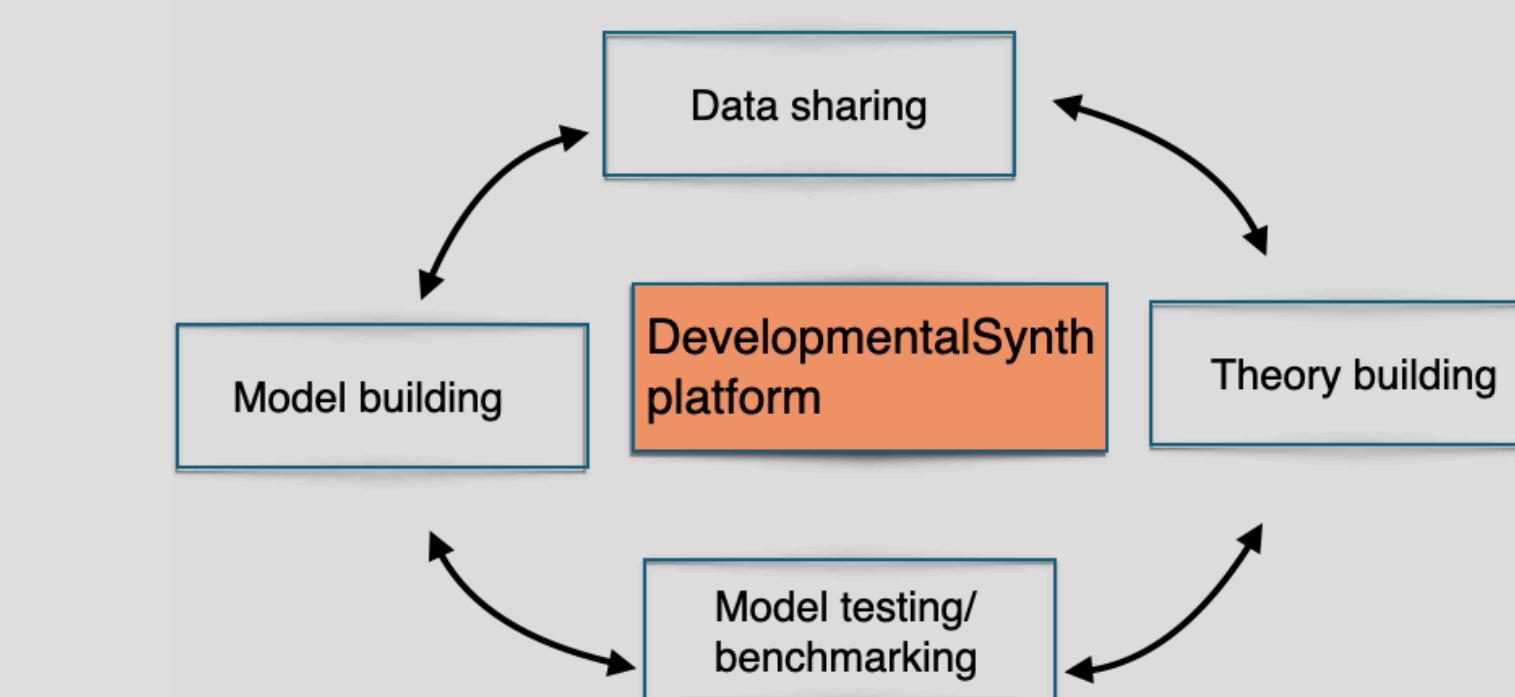
Shah et al., 2024

Current Developmental Datasets and Initiatives



Resources for community building and collaboration

A hypothetical platform for developmental researchers and ML scientists



MetaLab

ManyBabies

References

Ivanova, A. (2025). *How to evaluate the cognitive abilities of LLMs*.
 Long, B., et al. (2024). BabyView: Object recognition and early visual learning from an infant's perspective.
 ManyBabies Consortium. (2020). Quantifying sources of variability in infancy research using the infant-directed speech preference. MetaLab. <https://langcog.github.io/metabol>
 Shah, P., et al. (2024). Development of Cognitive Intelligence in Pre-trained Language Models.
 Shah, P., & Varma, S. (2025). The potential – and the pitfalls – of using pre-trained language models as cognitive science theories.
 Sullivan, J., et al. (2021). SAYCam: A Large, Longitudinal Audiovisual Dataset Recorded From the Infant's Perspective.
 Warstadt, A., et al. (2023). BabyLM: Training language models on child-directed speech for cognitive development research.
 Weihs, L., et al. (2022). Benchmarking Progress to Infant-Level Physical Reasoning in AI.